Synthesis of O-Methyl Nimbinone
 Robert H. Burnell, Nathalie Dumont, and Nathalie Théberge
 J. Nat. Prod., 1993, 56 (11), 1930-1936• DOI:
 10.1021/np50101a010 • Publication Date (Web): 01 July 2004
 Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50101a010 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

SYNTHESIS OF 0 -METHYL NIMBINONE

Robert H. Burnell,* Nathalie Dumont, and Nathalie Theberge
Département de Cbimie, Université Laval, Québer, Québec, Canada G1K 7P4

Abstract

Two syntheses are described to confirm the structure $\mathbf{1 5}$ proposed for nimbinone. The first, which leads to racemic 0 -methyl nimbinone [14], involves the polycyclization of a geraniol-derived intermediate 7. This same intermediate also afforded another preparation of (\pm)-methyl nimbiol [12]. The other synthesis starts from natural podocarpic acid and affords optically active 0 -methyl nimbinone [14].

Nimbinone [15] was recently described by Ira et al. (1) as one of the constituents of Azadirachta indica, the much studied "neem" tree. This skeleton is characterized by the methyl group at $\mathrm{C}-13$, which suggests that the usual isopropyl residue has been degraded in the biosynthesis.

Although the method is impractical if the aromatic ring carries too many substituents (2), the synthetic approach we adapted from the Livinghouse cascade cyclization (3) should permit the ready construction of nimbinone (Scheme 1). The suitably substituted phenylacetonitrile 5 was prepared in good yield (almost 50% overall) from o-methyl anisole [1] via the 3 -formyl derivative 2 (hexamethylenetetramine, $\mathrm{CF}_{3} \mathrm{COOH} ; 75 \%$), the primary alcohol $3\left(\mathrm{NaBH}_{4}, \mathrm{MeOH}\right.$, room temperature; $\left.94 \%\right)$, the benzyl bromide $\mathbf{4}\left(\mathrm{PBr}_{3}\right.$, pyridine, room temperature; 81%) and finally the nitrile $5\left(18-\mathrm{cr}-6, \mathrm{KCN}, \mathrm{MeCN}, 60^{\circ} ; 71 \%\right)$. The latter was readily alkylated with geranyl bromide $\{6\}$ to afford the racemic diene 7 .

Cyclization of the long sidechain in the normal manner ($\mathrm{PhSOMe}, \mathrm{BF}_{3} / \mathrm{MeNO}_{2}$) gave the trans-fused tricyclic 8. Transformation of $\mathrm{C}-7$ and then $\mathrm{C}-3$ to carbonyl groups by methods found effective in our previous syntheses aimed at candelabrone (2) afforded a racemic diketone 14, which showed identical spectral properties with the same 0 methyl derivative of nimbinone described by Ira et al. (1).

$1 \mathrm{R}=\mathrm{H}$
$2 \mathrm{R}=\mathrm{CHO}$
$3 \mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$
$4 \mathrm{R}=\mathrm{CH}_{2} \mathrm{Br}$
$5 \mathrm{R}=\mathrm{CH}_{2} \mathrm{CN}$

Scheme 1

Compound 9 was obtained when the diene 7 was cyclized in the absence of methyl benzenesulfenate, but best results were achieved by deliberately aiming at recovering half of the starting material. Without the C-3 stereocenter (as in 8) it was easier to see that the AB ring junction in the product was exclusively trans, but the reaction afforded both relative configurations at $\mathrm{C}-7$ with the equatorial isomer (nitrile syn to $\mathrm{C}-10$ methyl) predominant by the ratio $60 / 40$. For the next step no separation was required, and oxidative decyanation at this position afforded 12 identical with methyl nimbiol (1) as judged by the comparison of spectral data.

O-Methyl nimbinone 〔14] was also synthesized in optically active form from methyl 0 -methyl podocarpate [16] derived from natural podocarpic acid following the methodology used previously to corroborate the structure of margocin (4). The key intermediate was the allylic alcohol 27, which was prepared as follows. To establish the C-13 methyl group, an aldehyde residue was first introduced by the Duff reaction (5), affording 17, and the latter was reduced to 18 with $\mathrm{BF}_{3} / \mathrm{Et}_{3} \mathrm{SiH}$ (6). The $\mathrm{C}-4$ ester group was then hydrolyzed to the acid 19, and the latter then decarboxylated with lead tetracetate. From the mixture of products, olefins 20,21 , and 22 and the tertiary acetate 23 , only the latter was obtained pure, and it was immediately pyrolyzed to give more 20, 21, and 22. After epoxidation with m-CPBA the mixed olefinic products were easily separated affording

$16 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{H}$
$17 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{CHO}$
$18 \quad \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$
$19 \mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=\mathrm{Me}$

20

21

22

23

24

25

26

$31 R=A c$
$32 R=H$

$29 \mathrm{R}=\mathrm{H}$
$30 \mathrm{R}=\mathrm{Ac}$

28
some of the least reactive olefin 22 (13%), the epoxides $\mathbf{2 4}(36 \%), \mathbf{2 5}$ (11%), and 26 (15%), and the alcohol 27 (10%). More of the latter was obtained by the SeO_{2} oxidation of $\mathbf{2 2}$ and by the base-induced rearrangement of the epoxide 24.

From all these sources the yield of this useful synthon 27 was over 20% from the methyl derivative 19. Cambie et al. (7) published a more efficient route from podocarpic acid to the analogous olefin ($\mathbf{2 2}$ without the C-13 methyl group). In the present context it was found that 22 could be obtained in 36% yield from the acid 19 by this suite of four reactions, which involves formation of the acid chloride, its reaction with the sodium salt of pyridine-2-thiol N-oxide, rearrangement of the product by heating $\left(110^{\circ}\right)$, and, after m-CPBA oxidation, elimination to the olefin 22.

Simmons-Smith cyclopropanation of the allylic alcohol 27 gave the spiro-cyclopropyl derivative 28 , which was hydrogenolyzed to the 4,4-dimethyl compound 29. After protecting the secondary hydroxyl of the latter as the acetate 30, the benzylic C7 position was oxidized to afford the ketone 31. Hydrolysis gave the C-3 hydroxy compound 32, which was oxidized by the Jones reagent to the 3,7-diketone 14, which was shown by spectral comparison to be identical with O-methyl nimbinone derived from the natural product.

EXPERIMENTAL

Unless otherwise stated, the conditions used to characterize the products were as follows: melting points, Electrothermal, uncorrected; uv spectra, EtOH solutions (ϵ in parentheses), Hewlett Packard 8450 A; ir spectra, CCl_{4} solutions, Beckman $4250 ; 200 \mathrm{MHz}{ }^{1} \mathrm{H}$ and $50 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra, CDCl_{3} solutions (multiplicity, integrated peak areas, coupling constants in Hz and where necessary assignments in parentheses; "dis. $\mathrm{D}_{2} \mathrm{O}$ " signifies that the peak in question disappeared on shaking the solution with a small volume of $\mathrm{D}_{2} \mathrm{O}$), Varian XL-200. Assignments were from COSY, HETCOR, and APT experiments which are not described in the text. Ms, Hewlett Packard 5992, and exact mass measurements were performed at the Centre régional de spectrométrie de masse, Université de Montréal. Cc implies the use of Terochem Si gel (for flash chromatography) with the solvents determined by prior tlc using Whatman Al Sil G/UV precoated aluminium sheets. Reactions were carried out under \mathbf{N}_{2} or argon unless otherwise stated. Podocarpic acid (ex rimu resin) was supplied by Koch-Light, UK.

Preparation of diene 7 from 0-methylanisole [1].-4-Methoxy-3-methylbenzaldebyde [2].—Duff reaction: to ortbo-methyl anisole (0.203 g) in $\mathrm{CF}_{3} \mathrm{COOH}(11.5 \mathrm{ml})$ was added hexamethylenetetramine (0.886 g), and the mixture was refluxed for 1 h , then poured into $\mathrm{H}_{2} \mathrm{O}$, basified, and $\mathrm{Et}_{2} \mathrm{O}$ extracted. Cc (petroleum ether $/ 20 \% \mathrm{Et}_{2} \mathrm{O}$) afforded aldehyde $2\left(187 \mathrm{mg}, 75 \%\right.$): ir $1685 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 2.19(\mathrm{~s}, 3-\mathrm{Me})$, $3.84(\mathrm{~s}, \mathrm{MeO}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-5), 7.60(\mathrm{~s}, \mathrm{H}-2), 7.63(\mathrm{~d}, J=8.4 \mathrm{~Hz}, \mathrm{H}-6), 9.78$ (s, CHO); eims m/z $[\mathrm{M}]^{+} 150(61), 149(100), 121$ (12), 91 (29), 77 (18).

4-Metboxy-3-metbylbenzyl alcobol [3].-Aldehyde 2 (157 mg) in $\mathrm{MeOH}(10 \mathrm{ml})$ was stirred with $\mathrm{NaBH}_{4}(36 \mathrm{mg})$ for 15 min at room temperature. $\mathrm{H}_{2} \mathrm{O}$ was added, and cc (petroleum ether $/ 40 \% \mathrm{Et}_{2} \mathrm{O}$) of the product obtained by $\mathrm{Et}_{2} \mathrm{O}$ extraction gave alcohol 3 ($148 \mathrm{mg}, 94 \%$): ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 2.23$ (s, $3-\mathrm{Me}$), 3.82 (s, MeO), 4.53 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}$), 6.78 (d, $J=8.9 \mathrm{~Hz}, \mathrm{H}-5$), 7.11 (s, H-2), 7.13 (d, $J=8.9 \mathrm{~Hz}, \mathrm{H}-6$); eims m/z $[\mathrm{M}]^{+} 152(100), 137(90), 121(25), 109(24), 108(31), 107(17), 91(52), 77(35)$.

4-Metboxy-3-metbylbenzyl bromide [4]. -To a solution of $3(2.09 \mathrm{~g})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(300 \mathrm{ml})$ at 0° was added pyridine (1.22 ml) and then $\mathrm{PBr}_{3}(0.9 \mathrm{ml})$. After 4 h stirring, the mixture was poured into $\mathrm{H}_{2} \mathrm{O} /$ dilute HCl , $\mathrm{Et}_{2} \mathrm{O}$ extracted, and the residue chromatographed (petroleum ether $/ 5 \% \mathrm{Er}_{2} \mathrm{O}$) to give $\mathbf{4}(2.87 \mathrm{~g}, 97 \%)$: ${ }^{1} \mathrm{H}$ $\mathrm{nmr} \delta 2.23$ ($\mathrm{s}, 3-\mathrm{Me}$), $3.83(\mathrm{~s}, \mathrm{MeO}), 4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Br}\right), 6.78(\mathrm{~d}, J=9.1 \mathrm{~Hz}, \mathrm{H}-5), 7.19$ (s, H-2), 7.21 (d, $J=9.1 \mathrm{~Hz}, \mathrm{H}-6$): eims $m / z 216,[\mathrm{M}]^{+} 214$ (3), 135 (100), 91 (24).

4-Methoxy-3-methylphenylactonitrile [5]. -The mixture of bromide 4 (122 mg), 18-crown-6 (24 mg), and $\mathrm{KCN}(171 \mathrm{mg})$ in $\mathrm{MeCN}(1 \mathrm{ml})$ was stirred overnight at 60°, then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed ($\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, saturated NaCl). Cc afforded the nitrile 5 ($65 \mathrm{mg}, 71 \%$): ir $2240 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} 82.21$ ($\mathrm{s}, 3-\mathrm{Me}$), $3.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 3.82(\mathrm{~s}, \mathrm{MeO}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, \mathrm{H}-5), 7.07(\mathrm{~s}, \mathrm{H}-2), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, H-6); eims $m / z\left[\mathrm{M}^{+} 161\right.$ (90), 146 (100), 130 (11), 91 (56).

Alkylation with geranyl bromide [6]. -To a suspension of $\mathrm{NaH}(468 \mathrm{mg})$ in THF (140 ml) was added geranyl bromide (2.02 g) and then the nitrile $5(1.337 \mathrm{~g}$). After refluxing for 20 h , excess NaH was destroyed (saturated $\mathrm{NH}_{4} \mathrm{Cl}$) and the product obtained by $\mathrm{Et}_{2} \mathrm{O}$ extraction. Cc gave the alkylated product 7 [798 mg,
79% if the recovered starting material (780 mg) is subtracted): ${ }^{1} \mathrm{H}$ nmr δ (product is numbered as a cyclized diterpene) $1.55,1.59$, and 1.68 ($3 \mathrm{~s}, 4-\mathrm{Me}_{2}, 10-\mathrm{Me}$), $2.02(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-2$), 2.21 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeAr}), 2.55$ (2dd, $2 \mathrm{H}, J=13.6$ and $7.3 \mathrm{~Hz}, \mathrm{H}-6), 3.67(\mathrm{t}, J=7.7 \mathrm{~Hz}, \mathrm{H}-7), 3.82(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 5.06(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 5.16(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, \mathrm{H}-5), 6.78(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-11), 7.08(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14), 7.10(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}, \mathrm{H}-9)$; eims $m / z[\mathrm{M}]^{+} 297(1), 161(100), 160(30), 137(17)$. It was found preferable to recover starting material to avoid forming the di-alkylated product.

Cycization with $\mathrm{BF}_{3} / \mathrm{MeNO}_{2}$ - - Under N_{2} at $-30^{\circ}, \mathrm{BF}_{3} / \mathrm{MeNO}_{2}(2.28 \mathrm{M}, 3.5 \mathrm{ml})$ was added to $\mathrm{MeNO}_{2}(5 \mathrm{ml})$, and after 2 min diene $7(108 \mathrm{mg})$ in $\mathrm{MeNO}_{2}(1 \mathrm{ml})$ was introduced. Stirring was continued at -15° for 4 h , when saturated aqueous NaHCO_{3} was added and the product extracted into $\mathrm{Et}_{2} \mathrm{O}$. Cc (petroleum ether $/ 15 \% \mathrm{Et}_{2} \mathrm{O}$) afforded product $9(93 \mathrm{mg}, 86 \%)$ as a $60: 40$ mixture of two stereoisomers which could be used as such for the next step. For characterization they were separated by further cc. The major component (C-7 nitrile and C-10 methyl syn): ${ }^{1} \mathrm{H}$ nmr $\delta 0.94,0.96$, and 1.25 ($3 \mathrm{~s}, 4-\mathrm{Me} \mathrm{e}_{2}, 10-\mathrm{Me}$), 2.17 (s, MeAr), 3.80 (s, MeO), 3.97 (dd, $1 \mathrm{H}, \mathrm{J}=11.7$ and $6.9 \mathrm{~Hz}, \mathrm{H}-7$), $6.70(\mathrm{~s}, \mathrm{H}-11$), 7.13 (s, H-14). Minor component: ${ }^{1} \mathrm{H}$ nmr $\delta 0.92,1.03$ and 1.18 ($3 \mathrm{~s}, 4-\mathrm{Me}_{2}, 10-\mathrm{Me}$), $2.16(\mathrm{~s}, \mathrm{MeAr}), 3.80(\mathrm{~s}, \mathrm{MeO}), 4.01(\mathrm{~d}, 1 \mathrm{H}$, $J=6.0 \mathrm{~Hz}, \mathrm{H}-7), 6.70(\mathrm{~s}, \mathrm{H}-11), 6.98(\mathrm{~s}, \mathrm{H}-14)$. Both isomers showed ir $2220 \mathrm{~cm}^{-1} ;$ eims $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 297$ (49), 212 (24), 200 (21), 187 (34), 186 (27), 185 (100), 173 (37), 167 (21), 128 (21); hrms m/z 297.2089 $\left(\mathrm{C}_{20} \mathrm{H}_{2}, \mathrm{NO}\right.$ requires 297.2091).

Oxydecyanation [(\pm)-methyl nimbiol $]$.-To diisopropylamine $(0.04 \mathrm{ml})$ in THF $(1.4 \mathrm{ml})$ at -78° under argon was added n-BuLi (0.12 ml of 2.5 M in hexane). The temperature was raised to 0° for 15 min , then lowered to -78° again before adding the nitrile $9(52 \mathrm{mg}$) in THF (2.8 ml). After stirring for 5 min , a current of O_{2} was passed into the flask during 1 h . The temperature was raised to 0°, and the mixture was stirred with a solution of $\mathrm{SnCl}_{2}(0.6 \mathrm{ml}, 1 \mathrm{M}$, in 2 M HCl$)$ for 30 min . Extraction with $\mathrm{Et}_{2} \mathrm{O}$ and cc (petroleum ether $10 \% \mathrm{Et}_{2} \mathrm{O}$) gave (\pm)-ketone 12 ($52 \mathrm{mg}, 56 \%$): ${ }^{1} \mathrm{H}$ nmr $\delta 0.92,0.99$, and 1.23 ($3 \mathrm{~s}, 4-\mathrm{Me}{ }_{2}, 10-\mathrm{Me}$), $1.85(\mathrm{dd}, 1 \mathrm{H}, J=12.2$ and $5.5 \mathrm{~Hz}, \mathrm{H}-5), 2.18(\mathrm{~s}, \mathrm{MeAr}), 2.29\left(\mathrm{~d}, 1 \mathrm{H}, J=12.8 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-1\right), 3.88$ (s, MeO), 6.73 (s, H-11), $7.80(\mathrm{~s}, \mathrm{H}-14)$; ${ }^{13} \mathrm{C} \mathrm{nmr} \delta 38.0,18.9,41.3,33.3,49.7,36.0,198.5,123.8,156.8,38.3$, $104.0,162.5,124.9,129.7,15.6$ (C-1 to C-15), 32.6 (10-Me), 21.3 and 23.3 ($4-\mathrm{Me}_{2}$), 55.4 (OMe); eims $m / z\left[\begin{array}{l} \\ \hline\end{array}{ }^{+} 286(100), 271\right.$ (77), 229 (35), 203 (84), 201 (94), 189 (76), 175 (42), 149 (36), 128 (47), 115 (48); hrms m/z $286.1945\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{2}\right.$ requires 286.1931).

Cycization of diene 7 with PhSOMe.- $\mathrm{BF}_{3} / \mathrm{MeNO}_{2}(3 \mathrm{ml}$ of 1.95 M) was added to methyl benzenesulfenate (0.5 g) in $\mathrm{MeNO}_{2}(50 \mathrm{ml})$ at -30°. After 2 min , diene $7(0.998 \mathrm{~g})$ was added in MeNO_{2} $\left(9 \mathrm{ml}\right.$), and stirring was continued at -15° for 3 h . The mixture was then poured into saturated NaHCO_{3} and extracted with $\mathrm{Et} \mathrm{r}_{2} \mathrm{O}$ to give the clean cyclized product $8(0.962 \mathrm{~g}, 71 \%)$: ir $2220 \mathrm{~cm}^{-1}$; eims $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$ 405 (100), 296 (46), 280 (93), 269 (21), 226 (29), 212 (41), 200 (74), 186 (27), 160 (89), 149 (22), 135 (42), 122 (24), 109 (41). Two diastereomers were discernible (60:40) from the nmr, and only the major (that with the C-7 nitrile equatorial and syn to the C-10 angular methyl) was obtained pure by further cc: ${ }^{1} \mathrm{H}$ nmr $\delta 1.04,1.29$, and $1.33(3 \mathrm{~s}, 4-\mathrm{Me}$ e, $10-\mathrm{Me}$), 2.18 (s, MeAr), $2.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3$), $3.78(\mathrm{~s}, \mathrm{MeO}), 3.99$ (dd, 1 H , $J=12.4$ and $6.6 \mathrm{~Hz}, \mathrm{H}-7), 6.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11), 7.15(\mathrm{~s}, \mathrm{H}-14), 7.2-7.4(\mathrm{~m}, 5 \mathrm{H}, \mathrm{PhS})$; eims $m / z[\mathrm{M}]^{+} 405$ (100), 296 (46), 280 (93), 269 (21), 227 (24), 226 (28), 212 (41), 200 (74), 186 (27), 160 (89); hrms m/z $405.2135\left(\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NOS}\right.$ requires 405.2125$)$. The ${ }^{1} \mathrm{H}$-nmr spectrum of the minor product (from mixtures): $\delta 1.03,1.33$, and 1.40 ($3 \mathrm{~s}, 4-\mathrm{Me}_{2}, 10-\mathrm{Me}$), $2.16(\mathrm{~s}, \mathrm{MeAr}), 2.95(\mathrm{~m}, \mathrm{H}-3), 3.77(\mathrm{~s}, \mathrm{MeO}), 4.02(\mathrm{~d}, \mathrm{~J}=4.8$ $\mathrm{Hz}, \mathrm{H}-7$), 6.98 ($\mathrm{s}, \mathrm{H}-11$), $7.2-7.5$ (m, 6H, H-14 and Ph-S).

Oxidative decyanation at C-7.-To diisopropylamine (0.24 ml) in THF (8.2 ml) at -78° under argon, was added n - BuLi (0.67 ml of 2.5 M in hexane). The temperature was raised to 0° for 15 min , and after re-cooling to -78°, the nitrile $\mathbf{8}(394 \mathrm{mg})$ was added in THF (16.4 ml), and O_{2} was passed through the flask for 1 h . A solution of $\mathrm{SnCl}_{2}(3.3 \mathrm{ml}$ of 1 M in 2 M HCl$)$ was added at 0°, and after 30 min stirring the product was extracted into $\mathrm{Et}_{2} \mathrm{O}$ and washed repeatedly with $\mathrm{H}_{2} \mathrm{O} . \mathrm{Cc}$ (petroleum ether $/ 7 \% \mathrm{Et}_{2} \mathrm{O}$) gave starting material (141 mg) and then ketone $\mathbf{1 0}(181 \mathrm{mg}, 74 \%)$: ir $1668,1605,1486,1270,1140 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.09,1.27$, and $1.28\left(3 \mathrm{~s}, 10-\mathrm{Me}, 4-\mathrm{Me}_{2}\right), 1.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-1), 1.95(\mathrm{dd}, 1 \mathrm{H}, J=11.7$ and 6.2 Hz , $\mathrm{H}-5), 2.07$ (dt, $1 \mathrm{H}, J=8.4,8.4$ and $2.9 \mathrm{~Hz}, \mathrm{H}-2$), 2.18 (s, MeAr), 2.32 (dt, $1 \mathrm{H}, J=12.8,2.9$, and 2.9 Hz , $\mathrm{H}-1), 2.69(\mathrm{~d}, 1 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{H}-6), 2.73$ (br s, $1 \mathrm{H}, \mathrm{H}-6$), 2.91 (dd, $1 \mathrm{H}, J=8.4$ and $8.4 \mathrm{~Hz}, \mathrm{H}-3$), 3.85 (s, MeO), $6.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11), 7.28(\mathrm{~m}, 3 \mathrm{H}$, meta and para protons $\mathrm{Ph}-\mathrm{S}), 7.42(\mathrm{dd}, 2 \mathrm{H}, J=8.3$ and 1.6 Hz , H-ortho Ph-S), 7.80 (s, $1 \mathrm{H}, \mathrm{H}-14$); eims $m / z[\mathrm{M}]^{+} 394$ (81), 285 (64), 269 (74), 243 (33), 229 (12), 217 (64), 215 (51), 203 (35), 189 (100), 175 (27).

Oxidation to the sulfoxide $\mathbf{1 1}$. - To ketone $\mathbf{1 0}(40 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{ml})$ at -78° was added m CPBA ($85 \mathrm{mg}, 60 \%$) suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.9 \mathrm{ml})$. After stirring for 1 h at -78°, the solution was allowed to warm slightly, saturated aqueous $\mathrm{NaHSO}_{3}(3.5 \mathrm{ml})$ was added, and the product was obtained by $\mathrm{Et}_{2} \mathrm{O}$ extraction. $\mathrm{Cc}\left(\mathrm{Et}_{2} \mathrm{O}\right)$ gave some starting material and then pure sulfoxide 11: ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.26,1.34$, and 1.40 ($3 \mathrm{~s}, 4-\mathrm{Me}_{2}, 10-\mathrm{Me}$), 1.88 (dd, $1 \mathrm{H}, J=11.0$ and $6.5 \mathrm{~Hz}, \mathrm{H}-5$), 2.15 ($\mathrm{s}, \mathrm{MeAr}$), 2.41 (brd, $1 \mathrm{H}, J=12.8 \mathrm{~Hz}$,
$\mathrm{H}-1), 2.69\left(\mathrm{~d}, J=11.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-6\right), 2.71\left(\mathrm{~d}, J=6.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{\alpha}}-6\right), 3.80(\mathrm{~s}, \mathrm{MeO}), 6.60(\mathrm{~s}, \mathrm{H}-11), 7.48(\mathrm{~m}, 5 \mathrm{H}$, PhSO), 7.77 (s, H-14); eims m/z no [M] $]^{+}$, 285 (32) [M-Ph-SO] ${ }^{+}, 284$ (36), 269 (18), 217 (31), 215 (25), 202 (100), 189 (59), 175 (24), 159 (21)

EnOl thio ether 13.-To sulfoxide 11 (56 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{ml})$ at 0° was added trifluoroacetic anhydride (0.19 ml) and then pryidine (0.28 ml). After $5 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(2 \mathrm{ml})$ was introduced slowly and the mixture was $\mathrm{Et}_{2} \mathrm{O}$-extracted. Cc (petroleum ether $/ 7 \% \mathrm{Et}_{2} \mathrm{O}$) gave thio ether $13(24 \mathrm{mg}, 49 \%):{ }^{1} \mathrm{H} \mathrm{nmr} \delta$ $1.18,1.21$, and 1.37 ($3 \mathrm{~s}, 4-\mathrm{Me}_{2}, 10-\mathrm{Me}$), 2.18 (s, MeAr), 2.29 ($\mathrm{t}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}, \mathrm{H}-5$), 2.40 (br d, 1 H , $J=17.2 \mathrm{~Hz}, \mathrm{H}-1), 2.68(\mathrm{~d}, 2 \mathrm{H}, J=9.2 \mathrm{~Hz}, \mathrm{H}-6), 2.76(\mathrm{dd}, 1 \mathrm{H}, J=17.2$ and $6.5 \mathrm{~Hz}, \mathrm{H}-1), 3.87(\mathrm{~s}, \mathrm{MeO})$, $5.90(\mathrm{dd}, 1 \mathrm{H}, J=6.5$ and $2.1 \mathrm{~Hz}, \mathrm{H}-2), 6.68(\mathrm{~s}, \mathrm{H}-11), 7.2-7.5(5 \mathrm{H}, \mathrm{PhS}), 7.82(\mathrm{~s}, \mathrm{H}-14)$; eims $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+}$ 390 (100), 202 (12), 190 (62), 175 (28).
(\pm)-O-Methy nimbinone [14].-To thio ether $13(21.5 \mathrm{mg})$ in glacial HOAc (0.5 ml) was added $\mathrm{TiCl}_{4}(0.02 \mathrm{ml})$, causing the color to change to orange. After $20 \mathrm{~min}, \mathrm{H}_{2} \mathrm{O}(0.7 \mathrm{ml})$ was added and the mixture refluxed for 1 h . It was then diluted with $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{Et}_{2} \mathrm{O}$-extracted. Cc (petroleum ether $/ 40 \% \mathrm{Et}_{2} \mathrm{O}$) afforded the 0 -methyl nimbinone [14] ($12 \mathrm{mg}, 73 \%$): $\mathrm{mp} 106^{\circ}$; ir $1710,1667 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.12,1.18$, and 1.43 ($3 \mathrm{~s}, 4-\mathrm{Me}$ 2, $10-\mathrm{Me}$), 2.17 (s, MeAr), 3.88 (s, MeO), 6.67 (s, H-11), 7.81 (s, H-14); ${ }^{13} \mathrm{C} \mathrm{nmr} \delta 36.9,34.5$, $214.4,47.3,49.7,36.1,196.9,123.5,154.1,37.8,104.4,162.7,125.8,129.8,15.7$ (C-1 to C-15), 25.0 ($10-\mathrm{Me}$), 22.6 and $21.4\left(4-\mathrm{Me}_{2}\right.$), 55.5 (OMe); eims $m / z[\mathrm{M}]^{+} 300$ (100), 285 (11), 243 (15), 229 (11), 215 (28), 204 (22), 201 (24), 189 (14); hrms $m / z 300.1723\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}\right.$ requires 300.1724).

PREPARATION OF O-METHYL 13-METHYLPODOCARPIC ACID.-Formylation of methyl O-methylpodocarpate [16].-Duff reaction: To a solution of $16(15.03 \mathrm{~g})$ in TFA (160 ml) was added hexamethylenetetramine (25 g), and the mixture was refluxed for 3.5 h . After pouring into $\mathrm{H}_{2} \mathrm{O}$ and neutralization $\left(\mathrm{NaHCO}_{3}\right), \mathrm{Et}_{2} \mathrm{O}$ extraction afforded the product 17, methyl 0 -methyl-13-formyl-podocarpate ($17.20 \mathrm{~g}, 100 \%$): mp 120 124° (sufficiently pure for the next step); $[\alpha]^{26} \mathrm{D} 147.6^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ;$ ir $1725,1680 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.03$ (s, $3 \mathrm{H}, 10-\mathrm{Me}$), 1.06 (ddd, $1 \mathrm{H}, J=13.5,13.5$, and $4.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-3$), 1.25 (s, $3 \mathrm{H}, 4-\mathrm{Me}$), 1.40 (ddd, 1 H , $J=13.6,13.6$, and $\left.4.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-1\right), 1.49(\mathrm{dd}, 1 \mathrm{H}, J=12.1$ and $1.8 \mathrm{~Hz}, \mathrm{H}-5), 1.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-2\right), 1.88(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-6, \mathrm{H}_{\mathrm{a}}-2\right), 2.15\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\alpha}-6, \mathrm{H}_{\mathrm{B}}-1, \mathrm{H}_{\mathrm{B}}-3\right), 2.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-7\right), 3.64(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeOOC}), 3.85(\mathrm{~s}, 3 \mathrm{H}$, $\mathrm{MeOAr}), 6.82$ (s, $1 \mathrm{H}, \mathrm{H}-11$), 7.47 (s, $1 \mathrm{H}, \mathrm{H}-14$), 10.34 (s, $1 \mathrm{H}, \mathrm{CHO}$); eims $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 330$ (31), 255 (100), 227 (35), 199 (25), $189(31), 171$ (44), 164 (31), 158 (42), 128 (87); hrms $m / z 330.1846\left(\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{O}_{4}\right.$ requires 330.1831).

Reduction of the aldebyde 17.-A current of BF_{3} (bubbled through an $\mathrm{H}_{2} \mathrm{SO}_{4}$ solution of boric anhydride to remove the HF) was passed over $\mathrm{CH}_{2} \mathrm{Cl}_{2}(75 \mathrm{ml})$ at 0°. The aldehyde $\mathbf{1 7}(17.1 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (50 ml) wa added, and after 4 min triethylsilane was introduced (16.6 ml) and stirring was continued at 0° for 15 min . Saturated aqueous NaCl was added to stop the reaction, and the organic phase was washed with $\mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, and saturated NaCl before drying and evaporating. Cc (petroleum ether/ $10 \% \mathrm{Et}_{2} \mathrm{O}$) yielded some starting material (533 mg) and methyl 0 -methyl-13-methylpodocarpate [18] ($12.31 \mathrm{~g}, 78 \%$): mp $113-114^{\circ},[\alpha]^{27} \mathrm{D} 129.3\left(c=1.0, \mathrm{CHCl}_{3}\right.$) ir $1725 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.07(\mathrm{~s}, 3 \mathrm{H}, 10-$ Me), 1.10 (ddd, $1 \mathrm{H}, J=13.6,13.6$, and $4.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-3$), 1.29 (s, $3 \mathrm{H}, 4-\mathrm{Me}$), 1.43 (ddd, $1 \mathrm{H}, J=13.6,13.6$, and $\left.4.4 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-1\right), 1.54(\mathrm{dd}, 1 \mathrm{H}, J=12.1$ and $2.2 \mathrm{~Hz}, \mathrm{H}-5), 1.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{\beta}}-2\right), 1.97\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-6\right.$, $\left.\mathrm{H}_{\mathrm{a}}-2\right), 2.25\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}_{\mathrm{a}}-6, \mathrm{H}_{\mathrm{B}}-1, \mathrm{H}_{\mathrm{B}}-3\right.$), $2.17(\mathrm{~s}, 3 \mathrm{H}, 13-\mathrm{Me}), 2.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-7\right), 3.68(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe})$, 3.80 (s, 3H, MeOAr), 6.73 (s, 1H, H-11), 6.83 (s, 1H, H-14); eims m/z [M] 316 (100), 301 (61), 269 (39), 242 (82), 241 (96), 187 (51), 185 (95), 175 (52), 161 (48), 135 (62), 128 (58); hrms m/z 316.2034 $\left(\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}\right.$ requires 316.2038).

Hydrolysis of the ester.-A solution of the ester 18 (12.2 g) in 2,4,6-collidine containing LiI (38 g) was refluxed for 5 h and then poured into ice- $\mathrm{H}_{2} \mathrm{O}$, acidified (dilute HCl), and $\mathrm{Et}_{2} \mathrm{O}$-extracted to give the pure 0 -methyl 13 -methylpodocarpic acid [19] (obtained via the sodium salt) $\left(11.7 \mathrm{~g}, 100 \%\right.$): mp 178-183 ${ }^{\circ}$ (dec.); $[\alpha]^{28} \mathrm{D} 124.1^{\circ}\left(c=1.03, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.12$ (ddd, $1 \mathrm{H}, J=12.9,12.9$, and $3.7 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-3$), 1.16 (s, $3 \mathrm{H}, 10-\mathrm{Me}$), 1.37 ($\mathrm{s}, 3 \mathrm{H}, 4-\mathrm{Me}$), 1.43 (ddd, $1 \mathrm{H}, J=13.6,13.6$, and $4.5 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-1$), 1.58 (dd, $1 \mathrm{H}, J=11.7$ and $2.1 \mathrm{~Hz}, \mathrm{H}-5), 1.65\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-2\right), 1.92-2.35(\mathrm{~m}, 5 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}, 13-\mathrm{Me}), 2.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-7\right), 3.81$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeO}$), 6.73 (s, $1 \mathrm{H}, \mathrm{H}-11$), $6.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14), 11.0(\mathrm{br} \mathrm{s}, \mathrm{COOH})$; eims $m / z[\mathrm{M}]^{+} 302(96), 287$ (42), 241 (100), 187 (31), 185 (63), 173 (35), 135 (52), 128 (48); hrms $302.1881\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}\right.$ requires 302.1882).

Preparation of the allylic alcohol 27.-Decarboxylation of the acid.-Pyridine (6 ml) was added to acid $19(11.7 \mathrm{~g})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(120 \mathrm{ml})$ followed by $\mathrm{Pb}(\mathrm{OAC})_{4}(24.34 \mathrm{~g})$. After 4 h at reflux, the cooled solution was filtered, diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed (dilute $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, saturated NaCl), evaporated, and chromatographed (petroleum ether $10 \% \mathrm{Et}_{2} \mathrm{O}$) to give the mixture of olefins $\mathbf{2 0 - 2 2}(4.14 \mathrm{~g}, 42 \%)$ and then the tertiary acetate $23(2.23 \mathrm{~g}, 18 \%)$: ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.24$ (s, 10-Me), 1.58 (s, 4-Me), 2.02 (s, Ac), 2.20 (s, $13-\mathrm{Me}$), 3.83 (s, MeO), 6.73 (s, H-11), 6.85 (s, H-14).

Pyrolysis of the actate.-Acetate $\mathbf{2 3}(2.23 \mathrm{~g})$ was heated under a Vigreux column at 250° (sand bath) for 20 min , then taken up in $\mathrm{Et}_{2} \mathrm{O}$ and washed ($\mathrm{H}_{2} \mathrm{O}, \mathrm{NaHCO}_{3}, \mathrm{NaCl}$). Cc of the residue (petroleum ether/ $3 \% \mathrm{Er}_{2} \mathrm{O}$) gave more of the $\mathbf{2 0 - 2 2}$ olefin mixture ($1.54 \mathrm{~g}, 86 \%$).

Epoxidation.-To a solution of m-CPBA (3.43 g of 60%) in $\mathrm{CHCl}_{3}(300 \mathrm{ml})$ at 0° was added the mixed olefins 20-22 (4.14 g), and stirring was continued for 2 h . The mixture was poured into saturated NaHSO_{3} and the organic phase washed with $\mathrm{H}_{2} \mathrm{O}$. Cc of the residue (petroleum ether $/ 10-30 \% \mathrm{Et}_{2} \mathrm{O}$) gave exocyclic olefin 22 ($524 \mathrm{mg}, 13 \%$), 3,4-epoxide 24 ($1.569 \mathrm{~g}, 36 \%$), 4,18-epoxide $26(647 \mathrm{mg}, 15 \%$), 4,5 -epoxide 25 ($470 \mathrm{mg}, 11 \%$), and the allylic alcohol $27(449 \mathrm{mg}, 10 \%)$.

12-Methoxy-13-methyl-19-norpodocarpa-4(18),8,11,13-tetraene [22]-Mp 93-96,$[\alpha]^{25} \mathrm{D} 218.8$ ($c=0.95, \mathrm{CHCl}_{3}$); ir 1650 and $880 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.05(\mathrm{~s}, 10-\mathrm{Me}), 2.19(\mathrm{~s}, 13-\mathrm{Me}), 3.82(\mathrm{~s}, \mathrm{MeO}), 4.62$ (dd, $1 \mathrm{H}, \mathrm{J}=3.2$ and $1.6 \mathrm{~Hz}, \mathrm{H}-18$), 4.87 (dd, $1 \mathrm{H}, J=3.2$ and $1.6 \mathrm{~Hz}, \mathrm{H}-18$), 6.78 ($\mathrm{s}, \mathrm{H}-11$), 6.87 (s, H14); eims $m / z\left[\mathrm{M}^{+} 256(77), 241\right.$ (100), 213 (19), 185 (22), 173(11), 135 (27), 128 (21); hrms m/z 256.1814 ($\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}$ requires 256.1827).
$4 \alpha, 5 \alpha$-Epoxy-12-methoxy-13-methyl-18-norpadocarpa-8,11,13-triene [25]-[$[\alpha]^{26} \mathrm{D}$ 180.4 ${ }^{\circ}(c=1.18$, CHCl_{3}): ${ }^{1} \mathrm{Hamr} 81.44,1.46,2.23(3 \mathrm{~s}, 10-\mathrm{Me}, 4-\mathrm{Me}$, and $13-\mathrm{Me}), 2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-7\right.$), $3.85(\mathrm{~s}, \mathrm{MeO}), 6.75$ (s, H-11), 6.89 (s, H-14); eims $m / z[\mathrm{M}]^{+} 272$ (86), 214 (71), 201 (80), 199 (44), 187 (100), 173 (54), 159 (32), 141 (46), 128 (89); hrms m/z $272.1766\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}\right.$ requires 272.1776).
$4 \alpha, 18$-Epoxy-12-methoxy-13-methyl-18-norpodocarpa-8,11,13-triene [26].- $[\alpha]^{27} \mathrm{D} 99.6^{\circ} \quad(c=0.92$, CHCl_{3}): ${ }^{18} \mathrm{Hmmr} \delta 1.18(\mathrm{~s}, \mathrm{Me}-10), 2.02(\mathrm{dd}, 1 \mathrm{H}, J=12.8$ and $1.8 \mathrm{~Hz}, \mathrm{H}-5), 2.18(\mathrm{~s}, 13-\mathrm{Me}), 2.66(\mathrm{~d}, 1 \mathrm{H}$, $J=4.4 \mathrm{~Hz}, \mathrm{H}-19), 3.82(\mathrm{~s}, \mathrm{MeO}), 6.76(\mathrm{~s}, \mathrm{H}-11), 6.86(\mathrm{~s}, \mathrm{H}-14)$; eims m/z [M] 272 (100), 257 (47), 227 (28), 199 (27), 187 (42), 185 (36), 173 (83), 141 (49), 128 (82).

3 $\alpha, 4 \alpha$-Epoxy-12-metboxy-13-metbyl-18-norpodocarpa-8,11,13-triene [24] $]$ - $\mathrm{Mp}^{2} 87-95^{\circ},[\alpha]^{27} \mathrm{D} 158.1^{\circ}$ $\left(c=1.02, \mathrm{CHCl}_{3}\right):{ }^{i} \mathrm{H} \mathrm{nmr} \delta 1.14,1.39$, and $2.20(3 \mathrm{~s}, 10-\mathrm{Me}, 4-\mathrm{Me}, 13-\mathrm{Me}), 2.82\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}_{2}-7\right), 3.06(\mathrm{br}$ $\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{H}_{\mathrm{B}}-3\right), 3.83(\mathrm{~s}, \mathrm{MeO}), 6.75(\mathrm{~s}, \mathrm{H}-11), 6.87(\mathrm{~s}, \mathrm{H}-14)$) eims m/z $[\mathrm{M}]^{+} 272$ (100), 257 (60), 239 (54), $201(28), 187(47), 173(31), 159(31), 141(51), 135(53), 128(90) ;$ hrms $m / z 272.1763\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{2}\right.$ requires 272.1776).

3 α-Hydroxy-12-metboxy-13-methyl-19-norpodocarpa-4 418),8,11,13-tetraene $[27]$-Mp $48-52^{\circ} ;[\alpha]^{26} \mathrm{D}$ $135.7\left(c=1.09, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.03(\mathrm{~s}, 10-\mathrm{Me}), 1.70-2.10(\mathrm{~m}, 7 \mathrm{H}), 2.20(\mathrm{~s}, 13-\mathrm{Me}), 274-2.90(\mathrm{~m}, 3 \mathrm{H})$, 3.83 (s, MeO), 4.37 (d, $1 \mathrm{H}, J=2.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{B}}-3$), 4.76 (dd, $\left.1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{H}-18\right), 5.09(\mathrm{dd}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}$, $\mathrm{H}-18$), 6.78 (s, H-11), 6.88 (s, $\mathrm{H}-14$); eims $m / \mathrm{z}[\mathrm{M}]^{+} 272$ (68), 240 (17), 239(100), 224 (12), 173 (12), 141 (11), 135 (23), 128 (18); hrms $m / z 272.1781\left(\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}\right.$ requires 272.1776).

Isomerization of epoxide 24.-To a solution of diisopropylamine (1.3 ml) in $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{ml})$ at -78° was added n-BuLi ($1.0 \mathrm{ml}, 2.5 \mathrm{M}$ in hexanes) and the temperature allowed to rise to 0° for 15 min . The epoxide (251 mg) in $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{ml})$ was added, and the mixture was refluxed for 4 h , cooled, diluted with $\mathrm{Et}_{2} \mathrm{O}$, and washed (dilute $\mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}$, saturated NaHCO_{3}, saturated NaCl). Cc of the oil (petroleum ether $/ 30 \% \mathrm{Et}_{2} \mathrm{O}$) gave allylic alcohol 27 ($218 \mathrm{mg}, 87 \%$).

Allylic oxidation of excycycic olefin 22.- $\mathrm{SeO}_{2}(62.8 \mathrm{mg})$ was added to a solution of $\mathbf{2 2}(203 \mathrm{mg})$ in 95% $\mathrm{EtOH}(12.5 \mathrm{ml})$, and the mixture was refluxed for 2 h , cooled, and filtered through Celite. Cc (petroleum ether $/ 30 \% \mathrm{Et}_{2} \mathrm{O}$) of the residue obtained by evaporating the solvent gave some starting material (86 mg) and the allylic alcohol $27(109 \mathrm{mg}, 51 \%$, or 88% if recovered 22 is subtracted).

Cyclopropanation of the aitylic aicohol 27.-Under N_{2}, diethylzinc ($1.75 \mathrm{ml}, 1.1 \mathrm{M}$ in toluene) was added to $\mathbf{2 7}(150 \mathrm{mg})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{ml})$, and after stirring at room temperature for 5 min , the temperature was lowered to 0° and freshly distilled $\mathrm{CH}_{2} \mathrm{I}_{2}(0.25 \mathrm{ml})$ was added slowly. The cooling bath was removed, stirring continued for 35 min , and the mixture then poured into $\mathrm{H}_{2} \mathrm{O}$, acidified with dilure HCl , and $\mathrm{Et}_{2} \mathrm{O}$-extracted. Cc (petroleum ether $/ 30 \% \mathrm{Et}_{2} \mathrm{O}$) gave the cyclopropyl derivative $\mathbf{2 8}(112 \mathrm{mg}, 71 \%$) as a waxy solid: mp 45-53 ${ }^{\circ}$; $[\alpha]^{24} \mathrm{D} 42.5\left(c=1.03, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{nmr} 80.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-19), 0.41(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 18), $0.65(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-18$ and $\mathrm{H}-19), 1.20(\mathrm{~s}, 3 \mathrm{H}, 10-\mathrm{Me}), 1.52(\mathrm{~s}, \mathrm{OH}), 1.80$ to $2.20(6 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeAr})$, 2.37 (dd, $1 \mathrm{H}, J=10.3$ and $5.1 \mathrm{~Hz}, \mathrm{H}-5$), 2.75 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}_{2}-7$), 3.0 (br s, $1 \mathrm{H}, \mathrm{H}-3$), 3.81 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{MeO}$), 6.76 (s, 1H, H-11), $6.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14)$; eims $m / z\left[\mathrm{M}^{+} 286\right.$ (100), 253 (60), 243 (40), 225 (41), 211 (30), 185 (33), 172 (38), 141 (41), 135 (67), 128 (54); hrms $m / 2286.1925\left(\mathrm{C}_{99} \mathrm{H}_{26} \mathrm{O}_{2}\right.$ requires 286.1933).
 stirred overnight with $\mathrm{PtO}_{2}(23 \mathrm{mg})$ under H_{2} (rubber balloon). After filtering (Celite) and diluting with $\mathrm{Et}_{2} \mathrm{O}$, the solution was well washed, evaporated, and chromatographed (perroleum ether $/ 30 \% \mathrm{Et}_{2} \mathrm{O}$) to recover starting material (25 mg), some fractions where the aromaric ring was also hydrogenated, and then gem-dimethyl compound 29 ($47 \mathrm{mg}, 54 \%$): mp 117-120,$\{\alpha]^{27} \mathrm{D} 43.7\left(c=0.73, \mathrm{CHCl}_{3}\right)$: ${ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.96$, 1.04 , and 1.23 ($3 \mathrm{~s}, 4-\mathrm{Me}_{2}, 10-\mathrm{Me}$), $1.61(\mathrm{~s}, \mathrm{OH}), 1.7-2.2(7 \mathrm{H}), 2.16(\mathrm{~s}, \mathrm{MeAr}), 2.85\left(\mathrm{~m}, \mathrm{H}_{2}-7\right), 3.51(\mathrm{dd}$,
$J=2.8 \mathrm{~Hz}, \mathrm{H}-3$), $3.80(\mathrm{~s}, \mathrm{MeO}), 6.73(\mathrm{~s}, \mathrm{H}-11), 6.81(\mathrm{~s}, \mathrm{H}-14)$; eims $m / z[\mathrm{M}]^{+} 288$ (20), 255 (57), 188 (18), 173 (31), 158 (17), and 128 (27); hrms $288.2066\left(\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}\right.$ requires 288.2089).

Acetylation ($\mathrm{Ac}_{2} \mathrm{O}$, pyridine) of 29 afforded acetate $30(83 \%)$: ir 1730 and $1250 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} 80.94$, 1.01, 1.23, 1.99 (AcO), 2.16 and 3.80 (3 H singlets), 4.74 (brs, $\mathrm{H}-3$), 6.72 and 6.83 (arom); eims $m / z[\mathrm{M}]^{+}$ 330 (28), 255 (100), 187 (18), 173 (21), 128 (23); hrms $m / z 330.2217\left(\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}\right.$ requires 330.2195).

Benzylic oxidation of 30.-To acerate $30(38 \mathrm{mg})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(3 \mathrm{ml})$ was added PCC (133 mg) and Celite (301 mg), and the mixture was refluxed overnight. After cooling and diluting with $\mathrm{Et}_{2} \mathrm{O}$, drying (MgSO_{4}), and filtering, evaporation left an oil which on cc gave the ketone 31 ($20 \mathrm{mg}, 51 \%$): $[\alpha]^{26} \mathrm{D} 11.9$ ($c=1.15, \mathrm{CHCl}_{3}$); ir $1730,1670,1245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 0.92,1.07$, and $1.26\left(3 \mathrm{~s}, 4-\mathrm{Me}_{2}, 10-\mathrm{Me}\right.$), 2.0 (s, Ac), 2.19 (s, MeAr), 2.31 (dd, $1 \mathrm{H}, J=10.3$ and $7.5 \mathrm{~Hz}, \mathrm{H}-5$), $2.60(\mathrm{~d}, 1 \mathrm{H}, J=7.5 \mathrm{~Hz}, \mathrm{H}-6$), 2.61 (d, $1 \mathrm{H}, J=10.3$ $\mathrm{Hz}, \mathrm{H}-6$), 3.89 (s, MeO), 4.77 (br s, H-3), 6.73 ($\mathrm{s}, \mathrm{H}-11$), 7.82 (s, H-14); eims m/z $[\mathrm{M}]^{+} 344$ (17), 269 (100), $202(21), 189(46), 159(22), 128(36)$; hrms $m / z 344.1982\left(\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}\right.$ requires 344.1988$)$.

HYDROLYSIS OF THE ACETATE 31.-Acetate $31(37 \mathrm{mg})$ in $\mathrm{MeOH}(6 \mathrm{ml})$ was hydrolyzed with NaOH ($4 \mathrm{ml}, 5 \%$) at room temperature overnight. Extraction and cc (petroleum ether $/ 40 \% \mathrm{Et}_{2} \mathrm{O}$) gave the alcohol $32(28.3 \mathrm{mg}, 87 \%):[\alpha]^{24} \mathrm{D} 35.4\left(c=1.25, \mathrm{CHCl}_{3}\right):{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.01\left(\mathrm{~s}, 6 \mathrm{H}, 4-\mathrm{Me}_{2}\right), 1.24(\mathrm{~s}, 10-\mathrm{Me}), 1.64(\mathrm{~s}$, $\mathrm{OH}), 1.8$ to $2.2(4 \mathrm{H}), 2.17(\mathrm{~s}, \mathrm{MeAr}), 2.33(\mathrm{dd}, 1 \mathrm{H}, J=12.1$ and $5.7 \mathrm{~Hz}, \mathrm{H}-5), 2.58(\mathrm{~d}, 1 \mathrm{H}, J=5.7 \mathrm{~Hz}, \mathrm{H}-$ 6), $2.60(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=12.1 \mathrm{~Hz}, \mathrm{H}-6$), 3.56 (br s, $1 \mathrm{H}, \mathrm{H}-3$), 3.87 (s, MeO), 6.74 ($\mathrm{s}, \mathrm{H}-11$), 7.79 (s, H-14); eims $m / z\left\{\mathrm{M}^{+} 302(22), 269(45), 201(20), 189(14), 159(16), 128(24)\right.$; hrms $m / z 302.1889\left(\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{O}_{3}\right.$ requires 302.1882).

0-Methyl nimbinone 14 (oxidation of 32).-Alcohol 32 (25 mg) in $\mathrm{Me}_{2} \mathrm{CO}\left(2.5 \mathrm{ml}\right.$) at 0° was treated with excess Jones reagent for 10 min . Dilution with $\mathrm{H}_{2} \mathrm{O}, \mathrm{Et}_{2} \mathrm{O}$ extraction, and cc gave 0 -methyl nimbinone (25 mg , quant): $\mathrm{mp} 150-154^{\circ},[\alpha]^{25} \mathrm{D} 19.7\left(c=1.0, \mathrm{CHCl}_{3}\right.$); uv $\lambda \max 227(14,700), 279$ $(11,300) \mathrm{nm}$; ir $1710,1670 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr} \delta 1.13,1.19$, and 1.44 ($3 \mathrm{~s}, 4-\mathrm{Me}_{2}, 10-\mathrm{Me}$), 2.03 (ddd, 1 H , $J=13.0,13.0$ and $\left.5.5 \mathrm{~Hz}, \mathrm{H}_{\alpha}-1\right), 2.18(5,3 \mathrm{H}, \mathrm{MeAr}), 2.31$ (dd, $J=13.2$ and $\left.4.0 \mathrm{~Hz}, \mathrm{H}-5\right), 2.5-3.0(5 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}, \mathrm{MeO}), 6.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-11), 7.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-14)$; eims $m / z[\mathrm{M}]^{+} 300(13), 201$ (16), 189 (11), 175 (10), $159(12), 141(12), 128$; hrms $m / z 300.1716\left(\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{O}_{3}\right.$ requires 300.1725).

ACKNOWLEDGMENTS

The authors thank Professor Charles R. Engel (Université Laval) for financial assistance and the F.C.A.R., Ministère de l'education, Québec for a Graduate Bursary (N.T.).

LITERATURE CITED

1. I. Ira, B.S. Siddiqui, S. Faizi, and B.S. Siddiqui, Pbytochemistry, 27, 1801 (1988).
2. R.H. Burnell and S. Caron, Can. J. Cbem., 70, 1446 (1992).
3. S. Harring and T. Livinghouse, Tetrabedron Lett., 30, 1499 (1989).
4. R.H. Burnell, C. Côté, and N. Théberge, J. Nat. Prod., 56, 1459 (1993).
5. W.E. Smith, J. Org. Cbem., 37, 3973 (1972).
6. J.L. Fry, M. Orfanopoulos, M.G. Adlington, W.R. Dittman Jr., and S.B. Silverman, J. Org. Chem., 43, 374 (1978).
7. R.C. Cambie, M.P. Hay, L. Larsen, C.E.F. Rickard, P.S. Rutledge, and P.D. Woodgate, Aust. J. Chem., 44, 821 (1991).

Received 1 April 1993

